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Abstract: In this paper we explore Pareto based distributions to deal with the energy released by the major seisms.
This is a relevant problem because great earthquakes can cause heavy losses, both human and material. The stan-
dard Pareto distribution, despite  being usually well  fitted  to the data concerning the energy released by seisms 
reveals some lack of fit when dealing with the energy released by the great earthquakes. Besides the more
traditional Pareto and Log-Pareto, we also consider the Extended Slash Pareto (ESP) and the Location-Scale
Pareto Mixture (LSPM) distributions in this work. For the less studied ESP and LSPM distributions, we present the
pa- rameters estimators and perform a simulation study in order to evaluate the estimators performance under
different scenarios. Thenceforth, the four distributions are applied to two datasets (catalogs) containing
information on the seisms magnitude, which has a direct connection to the energy released by the earthquakes
(seismic moment). The used catalogs are considered as conveniently accurate and updated, and are being used in
recent works. In conclusion, the Pareto distribution still is appropriate to fit this kind of data, but other distributions
emerge as better models. The Log-Pareto distributions led to higher fitting p-values than the Pareto distribution,
and LSPM also emerges as a strong competitor. LSPM is better fitted to the greatest observations and therefore
givesamoreaccurateprevisionfortheenergyreleasedbythegreaterearthquakes.
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1 Introduction

The great earthquakes are a rare phenomenon (only
one occurrence in each five to ten years, in average)
but can cause heavy human and material losses. As
these seisms are still unpredictable, measuring their
magnitude, which is directly connected to their re-
leased energy, is a relevant issue. Nowadays, the Mo-
ment Magnitude Scale, introduced by [1], is the most
frequently applied magnitude scale, although some
variants may be considered. Previous to this measure,
many others magnitude scales were adopted, such as
the Local Magnitude Scale, the Surface Wave Mag-
nitude Scale or the Body Wave Magnitude Scale [2].
These scales are not appropriate to analyse the energy
released by the great seisms, since they saturate above
some threshold, and therefore seisms with magnitude
above 8.8 were never recorded with those scales. This
is usually denoted as the corner frequency problem.
Thus, when studying the magnitude of great seisms
and due to this lack of information, we must restrict
our analysis to the XX and XXI centuries. This is
the time period in which MW information can be esti-
mated with some accuracy [3]. Moreover, global data
must be considered, since some regions have some

specific characteristics, as the thickness of the seis-
mogenic crust, which may imply non self-similarity
between small and large events [4, 5] and a small
maximum of possible energy released by the seisms
in those regions. For example, for the Californian
region, [6, 7] claim that a possible maximum lies
somewhere between 8.1 and 8.3, and earthquakes with
moment magnitude above 7.9 were never registered.
Therefore, in this paper we analyse statistical mod-
els to fit the energy released by the great earthquakes,
with large MW magnitude. The models are restricted
to the ones based in the Pareto distribution (see Sec-
tion 3), because there are physical reasons to support
the use of this distribution [8, 9]. The use of power law
distributions (that is, Pareto based) is the rule when
counting the number of events above some magnitude
and the energy released by them, since these distribu-
tions usually lead to better fitting results [10]. Pareto
distribution has been used in classic works in this sub-
ject [11, 12] but also in recent ones [8, 10].
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2 Connecting seismic moment, mo-
ment magnitude scale and radiated
energy

Gutenberg and Richter [11] developed a relation be-
tween the radiated energy in ergs (E) and the surface-
wave magnitude (MS),

log10E = 1.5MS + 11.8, (1)

and [13] connected the seismic moment with the radi-
ated energy,

E =
∆σ

2µ
M0 ≈

10−4

2
M0 (2)

where ∆σ is the average stress drop in the earthquake,
µ is the rigidity of the elastic medium surrounding
the fault and M0 is the seismic moment in the dyne-
centimetre scale. Later, [1] used the above relations,
replacing (2) in (1) and MS by MW . This leads to

log10M0 = 1.5MW + 16.1 (3)

and

MW =
log10M0 − 16.1

1.5
. (4)

Thus, the previous authors created the MW scale,
which is related with M0 and is based on a physical
source model. When M0 is measured in the Newton-
meter (Nm) scale, c = 16.1 is replaced by c = 9.1 in
the above equation, leading to

MW =
log10M0 − 9.1

1.5
. (5)

A more accurate M0 calculation is based on the
area of fault rupture, the average value of the final
slip, and the rigidity modulus of the rocks and other
material surrounding the fault (cf. [14]).

3 Pareto based distributions in the
seismic moment fitting

Seismic moment can be converted into a power law
[12] implying that the Pareto distribution is often
chosen to model the energy released by earthquakes.
For a state of the art under a geological perspec-
tive, and physical reasons to support this choice, see
[6, 14, 15, 16] among others. However, there is usu-
ally some lack of fit in the higher magnitude earth-
quakes, which mainly arises from the non-similarity
between great earthquakes and the others. In [17] the
authors note that for some seismic regions the Pareto
distribution underestimates the frequency of the very

large earthquakes. Hence, in this work we are inter-
ested in analysing the energy released by the great
earthquakes, commonly defined as the ones that usu-
ally result in total destruction, with MW near 8.0 or
above [18, 5].

3.1 The Pareto distribution
The Pareto distribution function with shape parameter
α > 0 is defined as

FX (x) = 1− x−α, x ≥ 1.

Since only earthquakes with some magnitude are
detected (and even if detected, small earthquakes are
irrelevant concerning their radiated energy), usually
some truncation point t is considered [19, 20]. The
truncated Pareto has distribution function given by

FX|X≥t (x) = 1−
(x
t

)−α
, x ≥ t ≥ 1. (6)

Pareto distribution is self-similar, that is,

X|X ≥ t
t

∼ Pareto (α) . (7)

Self-similarity is very interesting from a mathe-
matical point of view, but might be unrealistic when
taking into account the specific characteristics of each
region. Pareto is a scale free distribution, thus the
scale parameter is the same whatever scale we look
at in. For t > 1,

FX (tx) = t−αFX (x) ,

where F denotes the survival function. Previous
works (such as [3, 21, 17]) suggested that in this con-
text α̂ ≈ 0.67 is an α estimate that is justified from a
mathematical point of view and also from a scale con-
venience point of view, since with this α estimative
MW ≈ MS for a moment magnitude 6.7 ≤ MW ≤
8.1, where the major (but not the great) earthquakes
occur.

3.2 The Log-Pareto distribution
Log-Pareto distribution (and also the next introduced
distributions) has a heavier tail than the Pareto distri-
bution. Therefore, it might be more suitable for mod-
elling the energy released by the great earthquakes,
mainly outside the moment magnitude range 6.7 ≤
MW ≤ 8.1 where MW ≈ MS and α̂ ≈ 0.67 in
the Pareto fitting. Preliminary work on this distribu-
tion properties and applications is available in [22].
Log-Pareto is merely a Pareto distribution transforma-
tion, because if X ∼ Pareto (α) then Y = eX ∼
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Log-Pareto (α). Thus, the α parameter has an inter-
pretation similar to the one previously shown for the
Pareto distribution, but now for the data logarithm.
The Log-Pareto distribution function is

FX (x) = 1− (lnx)−α , x ≥ e.
When a truncation point is set, the truncated Log-

Pareto has distribution function

FX|X≥t (x) = 1−
(

lnx

ln t

)−α
, x ≥ t ≥ e, (8)

and can also be transformed into a non-truncated
Pareto,

lnX|X ≥ t
ln t

∼ Pareto (α) . (9)

3.3 The extended slash family
The extended slash family is obtained considering the
random variable

Y =
X

Θ
where Θ ∼ Beta (α, 1), α > 0. The Y variable can
also be seen as a Pareto scale mixture of the X vari-
able [23], since Y = Θ−1X where Θ−1 ∼ Pareto (α).
With X ∼ Pareto (α), [3] obtained a random variable
whose distribution is designated as Extended Slash
Pareto (ESP), and studied its properties and applica-
tions to the seismic moment fitting problem. How-
ever, a detailed procedure leading to the maximum
likelihood estimator, together with a simulation study,
is now presented for the first time. The distribution
function is

FY (x) = 1− (1 + α lnx)x−α, x ≥ 1.

The ESP distribution can also be seen as a
gamma distribution transformation, because if X ∼
Gamma

(
2, α−1

)
then eX ∼ ESP (α) . Setting a trun-

cation point t,

FY |Y≥t (x) = 1−
(

1 + α lnx

1 + α ln t

)(x
t

)−α
, x ≥ t ≥ 1.

(10)
The α parameter has, under this distribution, a

slightly different interpretation compared to the one
previously presented for the Pareto distribution. How-
ever, and even considering this constraint, several au-
thors have already discussed the possibility of the
Pareto relation be too simple to adequately explain
the seismic moment (see [12] for further references
on this subject).

3.3.1 Estimation in the ESP
For the ESP and for the LSPM distributions (intro-
duced in the next subsection) we also present the es-
timators for the α parameter, along with a simulation
study to show how the process works. We decided
to implement this procedure solely for the two above
mentioned distributions because the estimation for the
Pareto distribution is straightforward and is already
implemented in most statistical software. For the Log-
Pareto, it is only needed a simple transformation of
the data, according to equation (9), and then α can be
estimated.

Although ESP has a more complex distribution
function expression, maximum likelihood estimation
can be applied for this distribution since an explicit
estimator can be obtained. Moreover, it is also rel-
evant to note that the maximum likelihood estimator
for the slash distribution family (this estimator is, in
fact, a M-estimator for slash distribution family) has
the highest breakdown point possible for regression
equivariant estimators [24], thus leading to robust es-
timation. The maximum likelihood estimator is ob-
tained by solving

d

dα
ln

[
n∏
i=1

fY |Y >t (xi)

]
= 0,

that is

d

dα
ln

[
n∏
i=1

(
α2

xi

lnxi

(α ln t+ 1)
(
1
txi
)α
)]

= 0

which leads to

d

dα
ln

[
α2ntαn

(α ln t+ 1)n

n∏
i=1

(
lnxi

xα+1
i

)]
= 0.

Defining β = ln t,

nα2β2 + 2nαβ + 2n

βα2 + α
+

d

dα

n∑
i=1

ln

(
lnxi

xα+1
i

)
= 0

and therefore

nα2β2 + 2nαβ + 2n

βα2 + α
=

n∑
i=1

lnxi.

For γ =
∑n

i=1 lnxi we finally obtain the estima-
tor as

α̂ =
−2nβ + γ −

√
−4(nβ)2 + 4nβγ + γ2

2 (nβ2 − βγ)
. (11)
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To evaluate the quality of the estimators, a sim-
ulation study was conducted. A total of N = 106

replicas were generated for each combination of mag-
nitude MW , sample dimension n and parameter α.
The values of (MW , n, α) presented in Table 1 only
represent a part of the performed simulations. Since
the results are all similar, we only present the situ-
ations where (MW , n, α) are closer to the real ones
(see Section 4). For all the above mentioned com-
binations, the observed α̂ mean is presented together
with the observed mean square error MSE, that is

α̂ =

N∑
i=1

α̂i

N
and MSE (α̂) =

N∑
i=1

(α̂i − α̂)2

N
.

Table 1: Simulations results for the ESP model.
Mw n = 25 α = 0.75 α = 1.00 α = 1.25

8.05
Mean
MSE

0.7705
0.0161

1.0296
0.0306

1.2887
0.0502

8.15
Mean
MSE

0.7707
0.0162

1.0295
0.0306

1.2886
0.0504

Mw n = 50 α = 0.75 α = 1.00 α = 1.25

8.05
Mean
MSE

0.7602
0.0074

1.0142
0.0140

1.2685
0.0230

8.15
Mean
MSE

0.7603
0.0075

1.0141
0.0140

1.2699
0.0232

Mw n = 100 α = 0.75 α = 1.00 α = 1.25

8.05
Mean
MSE

0.7546
0.0036

1.0072
0.0067

1.2595
0.0110

8.15
Mean
MSE

0.7553
0.0036

1.0071
0.0067

1.2586
0.0111

All the results show a suitable performance of
the estimator, even when the sample is quite small
(n = 25). There are no relevant differences in the
results between MW = 8.05 and MW = 8.15. How-
ever, and as expected, the accuracy of the estimation
increases with n. It is also important to note that the
observed α̂ mean is always greater than α. Thence,
there is a small positive bias in the estimation process
and therefore it is likely that the α estimates obtained
in Section 5 are slightly above the real value of α. De-
spite that, and since all the obtained MSE values are
small, the positive bias shall be almost irrelevant.

3.4 The Location-scale Pareto Mixture
In [25] a Location-scale Pareto mixture (LSPM) was
introduced. The LSPM is now defined as

W = µ+ σΘ(X − 1), (12)

where µ and σ are location and scale parameters,
Θ ∼ Pareto (α) and X ∼ Pareto (1). Note that µ de-
fines a truncation point, since the variable support is
SW = [µ,∞[. This happens because Θ(X − 1) > 0,
and this is the reason why we prefer to work with the
random variableW defined by equation (12). The ran-
dom variable W ∗ = µ + σΘX would have SW ∗ =
[µ+σ,∞[ as support. Hence, when working with W ,
the µ value will be known as it represents the selected
truncation point (MW ).

3.4.1 Estimation in LSPM
Maximum likelihood estimation is complex under this
distribution, since it relies on iterative methods. An
easy alternative is to use moments estimation method.
Briefly, the moment’s method consists in matching the
populations moments (usually mean µ and variance
σ2 when dealing with two parameters) to the sam-
ple moments (usually mean X and variance S2 when
dealing with two parameters) and solve the equations
in order to the unknown parameters (in this case α and
σ) as they are functions of µ and σ.

In [25] the performance of the moment’s method
estimators was already investigated under simulation,
and the authors concluded that this method works rea-
sonably well in most cases. Other authors such as
[26, 27] already point out that, in some situations,
the moment’s methods can be preferable. Hence, the
moments estimation method seems to be an adequate
choice. In our particular estimation problem, we are
considering that µ is known, and therefore we only
have to estimate two parameters (σ and α) instead of
three as in [25].

To guarantee the existence of the two first mo-
ments, let us consider the random variable transfor-
mation

W ′ = ln (W − µ) . (13)

The method of moments estimators are (cf. [25])

α̂ =

√(
S′2 − π2

3

)−1
and σ̂′ = W ′−α̂−1, (14)

where S′2 stands for the observed variance of W ′ and
W ′ stands for the observed mean of W ′.

To evaluate the quality of the estimators, a simu-
lation study was conducted. A total of N = 106 repli-
cas were generated for each combination of sample
dimension n and parameters α and σ. Note that the
µ = MW parameter is irrelevant since it is removed
before the estimation process begins. The values of
(n, α, σ) presented in Table 2 only represent part of
the performed simulations. Since the results are all
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similar, we only present the situations where (α, σ)
are closer to the actual values (see Section 4). For
all the above mentioned combinations, the observed α̂
and σ̂ means are presented together with the observed
mean square error for both parameters.

Table 2: Simulations results for the LSPM model.
n = 25 (α, σ)

(1.25,1) (1.25,10)

Mean (1.3559, 0.9335) (1.3536, 9.3287)
MSE (8.1329, 0.3480) (10.6100, 34.913)

(1.50,1) (1.50,10)

Mean (1.4341, 0.8492) (1.4312, 8.4845)
MSE (8.7415, 0.2959) (6.6233, 29.6520)

(1.75,1) (1.75,10)

Mean (1.4854, 0.7883) (1.4819, 7.8795)
MSE (8.9975, 0.2746) (7.0397, 27.3810)

n = 50 (α, σ)

(1.25,1) (1.25,10)

Mean (1.4878, 0.9789) (1.4743, 9.7871)
MSE (10.2030, 0.2238) (5.5486, 22.3940)

(1.50,1) (1.50,10)

Mean (1.5983, 0.9018) (1.5998, 9.2017)
MSE (6.3259, 0.1900) (5.9418, 19.0409)

(1.75,1) (1.75,10)

Mean (1.6900, 0.8451) (1.6879, 8.4438)
MSE (8.9499, 0.1779) (7.9860, 17.7540)

n = 100 (α, σ)

(1.25,1) (1.25,10)

Mean (1.5579, 1.0215) (1.5547, 10.2232)

MSE (7.0117, 0.1533) (5.2399, 15.3830)

(1.50,1) (1.50,10)

Mean (1.7534, 0.9577) (1.7565, 9.5789)

MSE (11.0434, 0.1288) (8.8830, 12.9010)

(1.75,1) (1.75,10)

Mean (1.9050, 0.9046) (1.8843, 9.0372)

MSE (60.9430, 0.1180) (9.0497, 11.7940)

The results presented in Table 2 are more com-
plex to analyse. While the accuracy of the parameters
estimates is reasonable, no evidence has been found
to support, as expected, that the increase of the sam-
ple size leads to more accurate estimates, although the
MSE almost always decreases when increasing n.

4 Catalogs and Data
We considered two different catalogs when adjust-
ing the presented models. The first one is freely
available in http://earthquake.usgs.gov/
earthquakes/search/, and is offered by the
United States Geological Survey (USGS catalog).
The data is continuously updated and we collected in-
formation about all the events with MW ≥ 7.85 that
occurred between 09-08-1901 (first detected event in
the last century) and 26-05-2019 (last detected event
until now) for a total of 133 seisms.

The second one can be requested by email
in http://www.isc.ac.uk/iscgem/
request_catalogue.php and is being devel-
oped by ISC-GEM Global Instrumental Earthquake
Catalogue [28, 29] (ISC catalog). It contains data
between 04-04-1904 and 31-12-2015 for a total of
139 seisms with MW ≥ 7.95. This is the last released
version of the catalog (version 6.0 - released on
2019-03-07). Note that the version 1.05 used in [30]
only had information about 86 seisms. Besides that,
some of the data was updated, and therefore the data
is now quiet different from the one analysed in [30].

Aside the number of events, the catalogs have
other differences. In USGS most of the seisms magni-
tudes are registered with only one decimal place, im-
plying that the data set has many repeated measures,
while in ISC catalog the majority of the seisms mag-
nitudes are indicated with two decimals places, lead-
ing to a data set with less repeated measures. This is
also the reason that made us select earthquakes with
MW ≥ 7.85 instead of MW ≥ 7.9. We assumed that
under the USGS catalog many events with magnitude
in [7.85; 7.89] were registered with MW = 7.9 and
therefore the proposed truncated point does not con-
tribute to an artificial difference between the catalogs.

Another relevant difference concerns the seisms
magnitudes between catalogs. For instance, with
MW ≥ 9.0 USGS catalog indicate five events
with MW = (9; 9.1; 9.1; 9.2; 9.5) while ISC cat-
alog only indicate four events with MW =
(9.09; 9.3; 9.31; 9.6). In terms of the released energy,
the increase in MW from 9.5 to 9.6 is equivalent to a
seism with MW = 9.24. Therefore, and since both
catalogs come from reputable sources, it is advisable
to analyse both and compare their results.

5 Fitting the Seismic moment of
great earthquakes

For both catalogs we adjusted the Pareto based mod-
els with MW ≥ 7.85, MW ≥ 8.05, MW ≥ 8.15 and
MW ≥ 8.35, which correspond to M0 ≥ 1020.875,
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M0 ≥ 1021.175, M0 ≥ 1021.325 and M0 ≥ 1021.625.
These truncation points were selected in order to work
solely with great seisms, near the threshold MW ∈
]7.8; 8.4[ where [5] believes that distribution fitting re-
mains an open issue, since the Pareto distribution fam-
ily seems too lightly-tailed to fit the energy released
by theses great seisms [3, 30, 31, 17].

The estimates α̂ for the parameters of the anal-
ysed models are presented in Table 3 (USGS catalog)
and Table 4 (ISC catalog), together with the p-values
of the Kolmogorov-Smirnoff (KS) and the Anderson-
Darling (AD) goodness of fit tests. These tests were
selected since KS test is the most used goodness of
fit test and the AD test gives more weight to the dis-
tribution tails, preferable when the main interest is to
fit extreme events (cf. [32]). Common model selec-
tion criterion, such as the Akaike Information Cri-
terion (AIC) or the Bayesian Information Criterion
(BIC), cannot be used for the adjusted models since
those models depend on different transformations of
the data set, and therefore are incomparable with the
usual information criteria [33]. Thus, parsimonious
issues are not numerically tackled in this work and
therefore will depend on each scientist opinion.

The first striking conclusion is that only one of
the combinations between catalog, truncation point,
model and goodness of fit test is rejected. This par-
ticular situation corresponds to the LSPM model with
the USGS catalog, MW ≥ 7.85 and KS goodness of
fit test. For all the other combinations we obtain p-
value grater 0.05. For this reason, all the other adjust-
ments can be considered as valid. Also, for the same
combination of truncation point, model and goodness
of fit test, the results are always better when using the
ISC catalog, except for the AD test p-values when
MW ≥ 8.35. This is probably due to the fact that
in this catalog magnitudes are usually displayed with
two decimal places, leading to smaller “jumps” in the
distribution function that is adjusted to the data, and
therefore to a better fit.

Another interesting conclusion is that α estimates
are now substantially higher than the ones obtained
in [3, 17] and that have been recommended in works
like [2, 21] due to important relations between mag-
nitude scales. Aside from Log-Pareto distribution that
does not have finite moments, all the other distribu-
tions have finite mean when α > 1, which happens
in most of the fitted models. Even considering, for in-
stance, the 95% confidence interval for α in the Pareto
fit for the ISC catalog with MW ≥ 8.05 (to work

Table 3: Summary results concerning the adjusted
models for the USGS catalog.

USGS Catalog
Mw 7.85 8.05 8.15 8.35
M0 1020.875 1021.175 1021.325 1021.625

n 133 70 45 20

Pareto α̂ 0.9874 1.0458 0.9552 0.7932
AD p-value 0.2322 0.3402 0.8111 0.9662
KS p-value 0.0593 0.1032 0.4276 0.9650

Log-Pareto α̂ 48.443 52.063 47.914 40.332
AD p-value 0.2288 0.3590 0.8686 0.9662
KS p-value 0.0599 0.1043 0.5876 0.9650

LSPM α̂ 1.1388 1.3926 2.0509 1.2900
AD p-value 0.1319 0.3580 0.8220 0.9954
KS p-value 0.0419 0.1519 0.4291 0.9685

ESP α̂ 1.0074 1.0655 0.9747 0.8124
AD p-value 0.2588 0.3402 0.8111 0.9662
KS p-value 0.0830 0.1032 0.4276 0.9650

Table 4: Summary results concerning the adjusted
models for the ISC catalog.

ISC-GEM Catalog
Mw 7.85 8.05 8.15 8.35
M0 1020.875 1021.175 1021.325 1021.625

n 139 74 48 21

Pareto α̂ 0.9842 1.0355 0.9506 0.7726
AD p-value 0.9458 0.4479 0.9085 0.9189
KS p-value 0.7494 0.3611 0.8311 0.9813

Log-Pareto α̂ 48.3184 51.5869 47.7211 39.3323
AD p-value 0.9595 0.4213 0.9222 0.9189
KS p-value 0.7507 0.3611 0.9485 0.9813

LSPM α̂ 1.9966 1.6561 1.2338 1.3375
AD p-value 0.9123 0.4607 0.9210 0.9726
KS p-value 0.8434 0.4738 0.9450 0.9840

ESP α̂ 1.0042 1.0553 0.9701 0.7917
AD p-value 0.9463 0.4502 0.9085 0.9189
KS p-value 0.7494 0.3610 0.8311 0.9813

with a truncation point similar to the used in the above
mentioned works), we obtain α ∈ [0.7786; 1.2298].
Thus, the traditional assumption that α = 2/3 in the
Pareto fit is now rejected since α = 2/3 is outside
the confidence interval. Moreover, at a first glance,
higher values of α contradict the idea that the Pareto’s
tails are too light for this kind of data.

Finally, LSPM adjustments led to slightly higher
p-values (and therefore better fits) in eight of the men-
tioned combinations, Log-Pareto in six combinations
and ESP in two combinations. It is important to note
that the traditional Pareto model never presented the
highest p-value and therefore it was never selected as
the best fit.

Another traditional way to assess the quality of
the fit is to draw qq-plots. In the x-axis we repre-
sent the expected quantiles when using the introduced
models, and in the y-axis the data quantiles. The
points should scatter evenly in the neighbourhood of
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the line y = x, where theoretical quantiles are equal
to observed quantiles. Points above the line show a
quantile higher than the expected, while points be-
low the line show the reverse situation. The expected
quantiles were computed using equations (7), (9), (10)
and (12), and the same transformations were applied
to the data set. Since, according with the selected
models, the graphs are all similar, we only present
two sets of qq-plots. The first one is for the ISC cata-
log with MW ≥ 8.05, considering all the fitted mod-
els (Figure 1) and the second one for both catalogs
with MW ≥ 8.15, considering Log-Pareto and LSPM
models (Figure 2).

When analysing Figure 1, the adjustments seem
good in a graphical evaluation, since the points are
randomly scattered in the neighbourhood of the diag-
onal line for all the four graphs. However, and except
for LSPM graph, there is a notorious lack of fit in the
higher events since all the eight greater seisms have
observed quantiles above the expected ones. This was
already observed in previous works such as [3, 31, 17]
and here it is clearer because the adjusted Pareto based
models have a higher α parameter, implying lighter
tales. The LSPM fit is the only one that, despite a
worse fit in the lower events, better captures the en-
ergy released by the biggest seisms.

Analysing Figure 2, it is now clear that the lower
p-values obtained when using USGS catalog came
from the excessive number of events with the same
magnitude. Note that the used goodness of fit tests
measure the distance between observed and expected
quantiles. Therefore, and since the theoretical mod-
els are continuous, with increasing quantiles, many
repeated measures with the same observed quantile
lead to a gap between expected and observed quan-
tiles. The Log-Pareto fit seems slightly better in the
first graph, mainly because the biggest earthquake is
recorded with MW = 9.5 instead of MW = 9.6 as in
the second graph. Again, LSPM model reveals a more
adequate fit for the biggest earthquakes independently
from the used catalog (third and forth graphs).

6 Conclusion
We adjusted four Pareto models to the energy released
by the major seisms. In addition, the estimation prob-
lem was considered when dealing with the not so com-
mon ESP and LSPM models. In what concerns to
the estimation outcomes, our simulations showed bet-
ter results for the ESP distribution. We highlight the
relevance of Pareto models on the energy released by
earthquakes, since there are both physical and statis-
tical reasons to support these models. Moreover, the
estimation of the radiated energy by great seisms re-

Figure 1: QQ-plots for the ISC catalog with MW ≥
8.05 for the Pareto (first), Log-Pareto (second), LSPM
(third) and ESP (forth) models.
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Figure 2: QQ-plots for the Log-Pareto model (top)
and LSPM model (botom) with MW ≥ 8.15, using
USGS catalog (first and third) and ISC catalog (sec-
ond and forth).
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mains an open issue. Therefore, updated data sets, as
the analysed here, contribute to acquire a clearer pic-
ture of the mathematical shape of the phenomenon.

As expected, the achieved results were similar for
all the considered models. This happens because the
four models are based, as the literature recommends,
in the Pareto distribution. Even though, Log-Pareto
and LSPM models were the best ones. The Log-
Pareto model is a simple transformation of the Pareto
model and only has one parameter to be estimated,
leading to a more robust model. Since this model had
the highest p-values in six occasions, it is a candidate
to be the best model. The LSPM model was better fit-
ted to the energy released by the greatest earthquakes
(see figures) and led to the best p-values in eight sit-
uations. The lack of fit for the larger events was one
of the main reasons that led us to try to find different
models, and in this particular LSPM model is clearly
the best model. Even though, we need to estimate
two parameters in the LSPM model. This is a draw-
back, because this model is more sensitive to sample
changes since one extra parameter must be estimated.

As future work, different models for extreme
events will be considered to deal only with the biggest
seisms, together with a thorough study about parsimo-
nious models in the seismic moment fitting context.
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